ERRATUM: PATTERN FORMATION BY OBLIVIOUS ASYNCHRONOUS MOBILE ROBOTS

NAO FUJINAGA, YUKIKO YAMAUCHI, HIROTAKA ONO, SHUJI KIJIMA, AND MASAFUMI YAMASHITA

November 28, 2017

Abstract

We make a correction to a pattern formation algorithm FORM for oblivious asynchronous mobile robots in [N. Fujinaga, Y. Yamauchi, H. Ono, S. Kijima, and M. Yamashita, "Pattern formation by oblivious asynchronous mobile robots," SIAM J. Comput., 44, 3, 740-785, 2015.]

Key words. agreement problem, memory, mobile robot, pattern formation, synchrony
AMS subject classification. 68Q85

1 Correction

A pattern formation algorithm FORM in [2] for oblivious asynchronous mobile robots consists of the pattern embedding (EMB), the embedded pattern formation (FOR), the finishing (FIN) and the gathering (GAT) phases, and its correctness relies on our incorrect CLAIM: All robots are stationary, when they enter each of the phases for the first time. This flaw was first pointed out by Cicerone, Stefano and Navarra [1]. We modify the phases so that CLAIM will resume the correctness.
(I) Pattern Embedding Phase EMB: EMB embeds the target pattern F by transforming the initial configuration I into an ℓ-stable configuration P_{ℓ}, by invoking algorithm $A 1$ (if $|\partial I|=2$ and $\rho(I)=1$), $A 2$ (if $|\partial I|>2$ and $\rho(I)=1$), or $A 3$ (if $|\partial I|>2$ and $\rho(I)>1$). We modify EMB so that an unstationary configuration in $I N V_{F I N}$ never emerge.

Observation 1 There is a pattern formation algorithm $A_{n=4}$ for 4 robots, if $\rho(I)$ divides $\rho(F)$.
Proposition 1 There is a pattern formation algorithm $A_{F=\partial F}$, if $F=\partial F$ and $\rho(I)$ divides $\rho(F)$.
Proof (Sketch) We assume $I=\partial I$ without loss of generality, since otherwise, $A_{F=\partial F}$ can first moves all robots in $I \backslash \partial I$ to distinct positions in $C(I)$ in such a way that the symmetricity does not increase. Let $I=\partial I=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and assume that the positions p_{i} (of robots r_{i}) occur in $C(I)$ in this order counterclockwise. For $j=1,2, \ldots, n$, let $L_{j}=\left(\ell_{j}, \ell_{j+1}, \ldots, \ell_{n}, \ell_{1}, \ldots, \ell_{j-1}\right)$, where $\ell_{j}=\ell\left(p_{j}, p_{j+1}\right)$ and $p_{n+1}=p_{1}$. Here $\ell(x, y)$ is the length of the arc of $C(I)$ from x to y counterclockwise. Assume without loss of generality that $L_{1} \geq L_{j}$ in the lexicographic order, for $j=1,2, \ldots, n$, which implies $\ell_{1} \geq \ell_{j}$ for $j=1,2, \ldots, n$. Observe that $L_{i}=L_{((i+k-1) \bmod n)+1}$ for all i, where $k=n / \rho(I)$. Let $\mathcal{R}_{0}=\left\{r_{1}, r_{1+k}, \ldots, r_{1+(\rho(I)-1) k}\right\}$. We embed $F=\partial F=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ in $C(I)$ in such a way that $C(F)=C(I)$ and $p_{1}=f_{1}$ hold, where $H_{1} \geq H_{j}$ for $j=1,2, \ldots, n, H_{j}=$ $\left(h_{j}, h_{j+1}, \ldots, h_{n}, h_{1}, \ldots, h_{j-1}\right), h_{j}=\ell\left(f_{j}, f_{j+1}\right)$, and $f_{n+1}=f_{1}$. Like $L_{j}, H_{i}=H_{\left(\left(i+k^{\prime}-1\right) \bmod n\right)+1}$ for $i=1,2, \ldots, n$, where $k^{\prime}=n / \rho(F)$. Although the embedding of F may not be unique, they are all identical since $\rho(I)$ divides $\rho(F)$. Then $A_{F=\partial F}$ moves each robot $r_{j} \notin R_{0}$ (at p_{j}) to f_{j} in $C(I)$ in such a way that all robots can continue to agree on r_{1}.

Let $I=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a (general) initial configuartion, and suppose that the view of p_{i} is not larger than that of p_{i+1} and hence $\operatorname{dist}\left(c(I), p_{i}\right) \leq \operatorname{dist}\left(c(I), p_{i+1}\right)$, for $i=1,2, \ldots, n-1$.

Observation 2 Assume that $n \geq 5$ and $F \neq \partial F$. (1) If $\rho(I)=1$, there is an initial configuration $I^{\prime}=\left\{x_{1}, x_{2}, p_{3}, \ldots, p_{n}\right\}$ for some positions x_{1} and $x_{2}\left(\neq x_{1}\right)$, from which an unstationary configuration in $I N V_{F I N}$ never emerge in $A 1$ or $A 2$. Furthermore, there is an algorithm $A_{\text {INIT }}$ to form I^{\prime} from I. (2) If $\rho(I)>1$, an unstationary configuration in $I N V_{F I N}$ never emerge in $A 3$.

Based on Observations 1 and 2 and Proposition 1, we modify EMB as follows: If $n=4$ or $F=\partial F$, then it invokes $A_{n=4}$ or $A_{F=\partial F}$ to directly form F (and $F O R M$ terminates). If $\rho(I)=1$, EMB first invokes $A_{I N I T}$ and then $A 1$ or $A 2$ depending on $|\partial I|$; else if $\rho(I)>1$, it invokes $A 3$.
(II) Embedded Pattern Formation Phase FOR: FOR transforms $I \backslash \Lambda$ into \tilde{F} by all robots in $I \backslash \Lambda$ invoking $C W M_{\tilde{F}}$. It may transform I into an unstationary configuration $J \in I N V_{F I N}$ when $\ell \geq 2$. We modify FOR so that \mathcal{R} will not reach such a J by carefully invoking $C W M$, provided that $\ell \geq 2$ and $F \neq \partial F$ by Proposition 1. I (resp. F) consists of $k=n / \ell$ regular ℓ-gons $I_{1}, I_{2}, \ldots, I_{k}$ (resp. $F_{1}, F_{2}, \ldots, F_{k}$) co-centered at $c(I)$ (resp. $c(F)$), where the view of (any point in) I_{i} (resp. F_{i}) is smaller than that of I_{i+1} (resp. F_{i+1}) for any $1 \leq i \leq k-1$, i.e., $\delta_{I_{i}} \leq \delta_{I_{i+1}}$ (resp. $\delta_{F_{i}} \leq \delta_{F_{i+1}}$), where $\delta_{I_{i}}$ (resp. $\delta_{F_{i}}$) is the radius of $C\left(I_{i}\right)$ (resp. $C\left(F_{i}\right)$). Thus $\Lambda=I_{k} \subseteq \partial I$ and $F_{k} \subseteq \partial F$. By repeatedly invoking $C W M$, FOR moves the robots in I_{i} to F_{i} for $i=1,2, \ldots, k-1$ in this order. To distinguish the robots that have been moved to points in F from the others, we define the size δ_{F} of the embedding of F in $C(I)$ by δ_{I} / e, where $e \geq 1$ is the minimum integer such that $\delta_{I_{i}}>\delta_{F_{i}}$ holds for $i=1,2, \ldots, k$. Specifically, let i be the largest integer such that the set of points in $C\left(I_{i}\right)$ (excluding $C\left(I_{i}\right)$) form $\cup_{j=1}^{i-1} F_{j}$ with the correct δ_{F}, which can be confirmed by $\ell=|\Lambda|, F_{1}$ and the fact that $\cup_{j=1}^{i-1} F_{j}$ has been formed, although the robots in general are unaware of $\delta_{I_{j}}$ for any $j<i$. Then the robots in I_{i} move to the points in F_{i} by invoking $C W M$. We call this stage STAGE i.

Proposition 2 Suppose that $F \neq \partial F$ and $\ell \geq 2$. Then $F O R$ (modified) does not transform I into a configuration $J \in I N V_{F I N}$, unless $n=2 \ell$ (i.e., $k=2$) and $|\partial F|=\ell$.

Proof (Sketch) To derive a contradiction, suppose that J emerges in FIN. Let $\zeta_{F}=\delta_{F_{k-1}} / \delta_{F_{1}}$ and $\zeta_{J}=d_{\max } / d_{\min }$, where $d_{\max }\left(\right.$ resp. $\left.d_{\min }\right)$ is the maximum (resp. minimum) distance of a point in $J \backslash \Lambda$ from $c(J)$. Then $\zeta_{J}=\zeta_{F}$. J emerges also in FOR. Obviously $J \notin I N V_{F I N}$ until $\cup_{j=1}^{k-2} F_{j}$ has been formed. Since $\delta_{I_{k-1}}>\delta_{F_{k-1}}, \zeta_{J}>\zeta_{F}$ if J emerges in STAGE $k-1$, a contradiction.

If $n=2 \ell$ and $|\partial F|=\ell$, by invoking $C W M$, FOR moves the robots in I_{1} to F_{1}, where $\delta_{F}=\delta_{I}$. By the definition of $C W M$, FOR does not transform I into $J \in I N V_{F I N}$, unless $I \in I N V_{F I N}$.
(III) Finishing Phase FIN: FIN invokes $A_{\ell=1}$ or $A_{\ell>1}$. They may produce the same configuration J from different initial configurations, which may violate our assumption that $F O R M$ be a function. We thus define $F O R M(J)=A_{\ell>1}(J)$ if $A_{\ell=1}(J) \neq A_{\ell>1}(J)$. This correction is not sufficient enough. Whenever the robots executing $A_{\ell=1}$ reach such a J, they must be stationary to consistently switch their algorithm to $A_{\ell>1}$. We modify $A_{\ell=1}$ to satisfy this requirement: $A_{\ell=1}$ moves exactly one robot at a time. Suppose that, at a configuration, $A_{\ell=1}$ allows a robot r move along a route and its move produces a configuration $J \in I N V_{A_{\ell>1}}$ at a point p en route. Then $A_{\ell=1}$ stops r at p so that J will be formed. This modification is feasible since obviously it can compute p.
(IV) Gathering Phase GAT: GAT transforms F into a pattern F^{*} with no multiplicities, invokes $A_{F^{*}}$ to form F^{*}, and finally forms F from F^{*}. Provided the modifications in (I)-(III), $A_{F^{*}}$ correctly forms F^{*}, and the robots can form F from F^{*}. Nevertheless, possibility that EMB, FOR or FIN produces an unstationary configuration $J \in I N V_{G A T}$ still remains. We modify GAT as follows: Let $f \in F$ be a point with multiplicity h, and suppose that f is replaced with h points $f_{1}, f_{2}, \ldots, f_{h}$ in F^{*}. GAT orders the robots at $f_{1}, f_{2}, \ldots, f_{h}$ to gather at f under the following constraints: (a) Gathering
at f is carried out in the increasing order of the view of f, and (b) if $f \neq c(F), f_{i}(i=3,4, \ldots, h)$ starts moving to $f\left(=f_{1}\right)$ after f_{i-1} has reached f. Provided this modification, we (re-)modify EMB so that it will not produce an unstationary configuration in $I N V_{G A T}$. FOR and FIN do not produce such a configuration. We prove this fact only for FOR; the proof for FIN is easy.
(A) EMB: First, we extend $A_{n=4}$ and $A_{F=\partial F}$ so that they can treat a pattern F with multiplicities. Second, we modify $A_{\text {INIT }}$ based on the following observation.

Observation 3 Assume that $n \geq 5$ and $F \neq \partial F$. (1) If $\rho(I)=1$, there is an initial configuration $I^{\prime}=\left\{x_{1}, x_{2}, p_{3}, \ldots, p_{n}\right\}$ for some positions x_{1} and $x_{2}\left(\neq x_{1}\right)$, from which an unstationary configuration in $I N V_{\text {FIN }} \cup I N V_{G A T}$ never emerge in A1 or A2. Furthermore, there is an algorithm $A_{\text {INIT }}$ to form I^{\prime} from I. (2) If $\rho(I)>1$, an unstationary configuration in $I N V_{F I N} \cup I N V_{G A T}$ never emerge in A3.
(B) FOR: Let $f \in F$ be a point with the smallest view among those with multiplicity $h \geq 2$. FOR does not produce an unstationary configuration $J \in I N V_{G A T}$ if $f \neq c(F)$. Suppose $f=c(F)$. Since ℓ, which is a divisor of $\rho(F)$, is a divisor of h, let $h=a \ell$ for some integer $a \geq 1$. Assuming that FOR produces a configuration in $I N V_{G A T}$ (to derive a contradiction), we determine the first STAGE u in which a configuration in $I N V_{G A T}$ emerges. Obviously $u \leq a$. Let J_{1} and J_{2} be the configuartions that STAGE u starts and ends, respectively. Then $J_{1} \notin I N V_{G A T}$ and $J_{2} \in I N V_{G A T}$, and they are identical except the difference between I_{u} and F_{u}. Since both I_{u} and F_{u} form a regular ℓ-gon, $\delta_{I_{u}}>\delta_{F_{u}}$, and $J_{1} \notin I N V_{G A T}$, FOR does not produce a configuration in $I N V_{G A T}$ until STAGE u ends, and stationary configuration J_{2} emerges, by the definition of $C W M$.

References

[1] S. Cicerone, G.D. Stefano, and A. Navarra, "Asynchronous Pattern Formation: the effects of a rigorous approach," arXiv:1706.02474v1 [cs.DC] 8 Jun 2017.
[2] N. Fujinaga, Y. Yamauchi, H. Ono, S. Kijima, and M. Yamashita, "Pattern formation by oblivious asynchronous mobile robots," SIAM J. Comput., 44, 3, 740-785, 2015.

