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          paths between 𝑠 and 𝑡 in 𝐺 
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𝐴-paths and S-paths 

𝐺 = (𝑉, 𝐸): undirected graph 

𝐴 ⊆ 𝑉: terminal set,  S = 𝐴1, … , 𝐴𝑘 : partition of 𝐴 

• An 𝐴-path is a path between distinct terminals in 𝐴 
    whose inner vertices are not in 𝐴. 

• An S-path is an 𝐴-path between distinct classes in S. 

An 𝐴-path, NOT an S-path An S-path 

𝐴1 𝐴2 𝐴3 
𝑨 



Mader’s disjoint S-paths problem 

Input: 𝐺 = (𝑉, 𝐸): undirected graph 

 𝐴 ⊆ 𝑉: terminal set,  S : partition of 𝐴 

Find: a maximum family of (fully) vertex-disjoint S-paths in 𝐺 



Mader’s disjoint S-paths problem 

• Min-max formula  (Mader 1978) 

• Reduction to matroid matching  (Lovász 1980) 

    → Poly-time solvability (one can obtain a “good” matroid) 

• Linear representation of the matroid  (Schrijver 2003) 

    → More efficient solvability (via linear matroid parity) 

Input: 𝐺 = (𝑉, 𝐸): undirected graph 

 𝐴 ⊆ 𝑉: terminal set,  S : partition of 𝐴 

Find: a maximum family of (fully) vertex-disjoint S-paths in 𝐺 
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Linear matroid parity problem 

1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0
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0 0 0 0 0 1 1 1

 

Input: a matrix 𝑍 ∈ 𝐅𝑛×2𝑚 with pairing of the columns 

Find: a maximum family of column-pairs 
          whose union is linearly independent 
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Linear matroid parity problem 

• Solvable in 𝑂 𝑚17  time  (Lovász 1981) 

• Solvable in 𝑂 𝑚𝑛3  time  (Gabow, Stallmann 1986) 

• Solvable in 𝑂 𝑚𝑛2  time w.h.p.  (Cheung, Law, Leung 2011) 

If fast matrix multiplication is used, then, for 𝜔 ≈ 2.376 

• Solvable in 𝑂 𝑚𝑛𝜔  time  (Gabow, Stallmann 1986) 

• Solvable in 𝑂 𝑚𝑛𝜔−1  time w.h.p.  (Cheung et al. 2011) 

Input: a matrix 𝑍 ∈ 𝐅𝑛×2𝑚 with pairing of the columns 

Find: a maximum family of column-pairs 
          whose union is linearly independent 
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Group-labelled graphs 

𝐺 = 𝑉, 𝐸 : undirected graph 

𝐺 = 𝑉, 𝐸 : two-way orientation of 𝐺 

 Γ: group 

 𝜓: 𝐸 → Γ  with  𝜓 𝑒 = 𝜓 𝑒 −1 for each 𝑒 ∈ 𝐸 

 

 

 A pair 𝐺, 𝜓  is called a Γ-labelled graph. 

𝐺　　     　𝐺  

𝜓 𝑒 = 𝛼 

𝜓 𝑒 = 𝛼−1
 



Labels of walks 

𝜓: 𝐸 → Γ  with  𝜓 𝑒 = 𝜓 𝑒 −1 for each 𝑒 ∈ 𝐸 

The label 𝜓 𝑊  of a walk 𝑊 = (𝑣0, 𝑒1, 𝑣1, … , 𝑒𝑘 , 𝑣𝑘) is 

𝜓 𝑊 ≔ 𝜓 𝑒𝑘 ⋯𝜓 𝑒2 ⋅ 𝜓 𝑒1  . 

 

𝑣0 

𝑣1 

𝑣2 

𝑣𝑘−1 

𝑣𝑘 

𝑒1 
𝑒2 𝑒𝑘 

𝑊 



Labels of walks 

𝜓: 𝐸 → Γ  with  𝜓 𝑒 = 𝜓 𝑒 −1 for each 𝑒 ∈ 𝐸 

The label 𝜓 𝑊  of a walk 𝑊 = (𝑣0, 𝑒1, 𝑣1, … , 𝑒𝑘 , 𝑣𝑘) is 

𝜓 𝑊 ≔ 𝜓 𝑒𝑘 ⋯𝜓 𝑒2 ⋅ 𝜓 𝑒1  . 

𝜓 𝑊 = 𝜓 𝑒 1 ⋅ 𝜓 𝑒 2 ⋯𝜓 𝑒 𝑘  
= 𝜓 𝑒1

−1 ⋅ 𝜓 𝑒2
−1⋯𝜓 𝑒𝑘

−1 = 𝜓 𝑊 −1 

𝑣0 

𝑣1 

𝑣2 

𝑣𝑘−1 

𝑣𝑘 

𝑒1 
𝑒2 𝑒𝑘 

𝑊 



Packing 𝐴-paths in group-labelled graphs 

• Non-zero model  (Chudnovsky, Geelen, Gerards, 

          Goddyn, Lohman, Seymour 2006) 

       An 𝐴-path 𝑃 can be used for packing  ⇔  𝜓 𝑃 ≠ 1Γ. 

• Non-returning model  (Pap 2007) 

       Γ is a symmetric group 𝑆𝑑, the set of permutations on 1,… , 𝑑 . 

       An 𝐴-path 𝑃 can be used for packing  ⇔ 𝜓 𝑃 𝑑 ≠ 𝑑. 

• Subgroup model  (Pap) 

       For a prescribed proper subgroup Γ′ ⊂ Γ, 

       an 𝐴-path 𝑃 can be used for packing  ⇔  𝜓 𝑃 ∉ Γ′. 



Relation among the models 

Packing S-paths 

Non-zero model 

Non-returning model Subgroup model ≈ 

Generalization 

Generalization 

Focus on 



Subgroup model 

Γ′: proper subgroup of Γ 

An 𝐴-path 𝑃 is admissible  ⇔  𝜓 𝑃 ∉ Γ′. 
def 

Γ = 1,−1 ,×  
Γ′ = 1  

𝜓 𝑒 ≡ −1 

𝐴 



Subgroup model 

Γ = 1,−1 ,×  
Γ′ = 1  

𝜓 𝑒 ≡ −1 

admissible 

𝐴 

Γ′: proper subgroup of Γ 

An 𝐴-path 𝑃 is admissible  ⇔  𝜓 𝑃 ∉ Γ′. 
def 
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Subgroup model 

Γ = 1,−1 ,×  
Γ′ = 1  

𝜓 𝑒 ≡ −1 

admissible 
non-admissible 

𝐴 
odd-length 

 

Γ′: proper subgroup of Γ 

An 𝐴-path 𝑃 is admissible  ⇔  𝜓 𝑃 ∉ Γ′. 
def 



Subgroup model of packing 𝐴-paths 

Input: 𝐺, 𝜓 : Γ-labelled graph 
  𝐴 ⊆ 𝑉 𝐺 : terminal set,  Γ′: proper subgroup of Γ 

Find: a maximum family of 
          (fully) vertex-disjoint admissible 𝐴-paths in 𝐺, 𝜓  

• Min-max formula  (Pap 2007) 

• No explicitly polynomial-bounded algorithm was known… 
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Algorithms for subgroup model 

• Extension of algorithm for the non-zero model 
     ― Extend the combinatorial algorithm of 
          Chudnovsky, Cunningham, Geelen (2008) 

     ― Always applicable 

     ― Not so fast, 𝑂 𝑉 𝐺 5  time 

• Reduction to linear matroid parity 
     ― Extend the linear representation of Schrijver (2003) 

     ― Not always applicable 

     ― Faster, 𝑂 𝑉 𝐺 𝜔  time w.h.p. for simple graphs, for example, 
          where 𝜔 ≈ 2.376 is the matrix multiplication exponent 

 



What is desired for reduction? 

Linearly independent 
column-pairs 

Vertex-disjoint 
admissible 𝐴-paths 

 

Linear matroid parity Subgroup model 

uniquely 

reduce 



What is desired for reduction? 

• Edge  ↔  Column-pair  (Edge set  ↔  Column-pairs) 

• Each connected component formed by a feasible edge set  
   contains at most one 𝐴-path, which is admissible. 

 

Linear matroid parity Subgroup model 
reduce 

Linearly independent 
column-pairs 

Vertex-disjoint 
admissible 𝐴-paths 

uniquely 



Sufficient condition for reduction 

 Main theorem (one direction) 
∃𝜌: Γ → PGL 2, 𝐅   homomorphic, ∃𝑌: 1-dim. subspace of 𝐅2 
  s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌  

  ⇒  Subgroup model reduces to linear matroid parity. 

Γ: group,   Γ′: proper subgroup of Γ,   𝐅: field 

𝑛: positive integer,   𝐼𝑛: 𝑛 × 𝑛 identity matrix 

• GL 𝑛, 𝐅 : set of all nonsingular 𝑛 × 𝑛 matrices over 𝐅 

• PGL 𝑛, 𝐅 ≔ GL 𝑛, 𝐅 𝑘𝐼𝑛 𝑘 ∈ 𝐅  



Idea of reduction 

   𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

   s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌   (𝐅: field) 

• Each terminal in 𝐴 is associated with 𝑌. 

• Each edge acts and carries 1-dim. subspaces. 
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Idea of reduction 

   𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

   s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌   (𝐅: field) 

• Each terminal in 𝐴 is associated with 𝑌. 

• Each edge acts and carries 1-dim. subspaces. 

𝑒1 
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𝑃 

𝜌 𝜓 𝑃 𝑌 = 𝑌 ⇔  𝜓 𝑃 ∈ Γ′ 
Linearly dependent        Non-admissible 



𝑒  

𝟎
 1  

𝟎
 −1  

𝟎

 

Construction of matrix (step 1) 

     𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

     s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌   (𝐅: field) 

• Construct the incidence matrix of the input graph, 

    where fix one direction 𝑒 = 𝑢𝑣 ∈ 𝐸 of each edge 𝑒 ∈ 𝐸. 

• Replace 𝑢, 𝑒 -entry by 𝐼2 and 𝑣, 𝑒 -entry by −𝜌 𝜓 𝑒 . 

𝑢 

𝑣 
𝑢 

𝑣 

𝑒 



𝑒  

𝟎
 1  

𝟎
 −1  

𝟎

 

Construction of matrix (step 1) 

     𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

     s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌   (𝐅: field) 

• Construct the incidence matrix of the input graph, 

    where fix one direction 𝑒 = 𝑢𝑣 ∈ 𝐸 of each edge 𝑒 ∈ 𝐸. 

• Replace 𝑢, 𝑒 -entry by 𝐼2 and 𝑣, 𝑒 -entry by −𝜌 𝜓 𝑒 . 

𝑢 

𝑣 𝑂
 𝐼2  

𝑂
 −𝜌 𝜓 𝑒  

𝑂

 
𝑢 

𝑣 

𝑒 

𝑢 

𝑣 

𝑒 

→ 

paired 



𝑂 𝟎
 𝐼2  𝑦

𝑂
 −𝜌 𝜓 𝑒  𝟎

𝑂

 
𝑒  

Construction of matrix (step 2) 

     𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

     s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌   (𝐅: field) 

• 𝑄 ≔ 𝑥 ∈ 𝐅2 𝑉 𝐺 𝑥 𝑣 ∈ 𝑌 𝑣 ∈ 𝐴 , 𝑥 𝑣 = 𝟎 𝑣 ∉ 𝐴 . 

• The linear independence is considered in 𝐅2 𝑉 𝐺 /𝑄. 

𝑢 

𝑣 

𝑢 

𝑣 

𝑒 

Begin with 
a basis of 𝑄. 

𝟎 ≠ 𝑦 ∈ 𝑌 

𝐴 



𝑂 𝟎
 𝐼2  𝑦

𝑂
 −𝜌 𝜓 𝑒  𝟎

𝑂

 
𝑒  

Construction of matrix (step 2) 

     𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

     s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌   (𝐅: field) 

• 𝑄 ≔ 𝑥 ∈ 𝐅2 𝑉 𝐺 𝑥 𝑣 ∈ 𝑌 𝑣 ∈ 𝐴 , 𝑥 𝑣 = 𝟎 𝑣 ∉ 𝐴 . 

• The linear independence is considered in 𝐅2 𝑉 𝐺 /𝑄. 

𝑢 

𝑣 

𝑢 

𝑣 

𝑒 

Begin with 
a basis of 𝑄. 

𝟎 ≠ 𝑦 ∈ 𝑌 

𝐴 

Eliminate in advance.  ⇔ 



Γ = 1,−1 ,×  ,   Γ′ = 1      (𝜓 𝑒 ≡ −1) 

→   𝜌 1 =
1 0
0 1

 ,   𝜌 −1 =
0 1
1 0

 ,   𝑌 =
1
0

 ,   𝐅 : arbitrary 

𝜌 1 𝑌 =
1 0
0 1

1
0

=
1
0

= 𝑌 

𝜌 −1 𝑌 =
0 1
1 0

1
0

=
0
1

≠ 𝑌 

   𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

   s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌   (𝐅: field) 

Ex. 1. Packing odd-length 𝐴-paths 



Γ = 𝐙,+  ,   Γ′ = 0      (𝜓 : as above) 

→   𝜌 𝑘 =
1 0
𝑘 1

   (𝑘 ∈ 𝐙) ,   𝑌 =
1
0

 ,   𝐅 = 𝐐 

𝜌 𝑘 𝑌 =
1 0
𝑘 1

1
0

=
1
𝑘

                                                              

   𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

   s.t.  Γ′ = 𝛾 ∈ Γ 𝜌 𝛾 𝑌 = 𝑌   (𝐅: field) 

Ex. 2. Mader’s S-paths 

𝐴𝑖  
−𝑖 

𝑖 

−𝑗 

𝑗 

0 0 

𝐴𝑗  



Γ = 𝐙,+  ,   Γ′ = 0      (𝜓 : as above) 

→   𝜌 𝑘 =
1 0
𝑘 1

   (𝑘 ∈ 𝐙) ,   𝑌 =
1
0

 ,   𝐅 = 𝐐 

𝜌 𝑘 𝑌 =
1 0
𝑘 1

1
0

=
1
𝑘

                                                              

   𝜌: Γ → PGL 2, 𝐅   homomorphic,   𝑌: 1-dim. subspace of 𝐅2 

   s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌   (𝐅: field) 

Ex. 2. Mader’s S-paths 

𝐴𝑖  
−𝑖 

𝑖 

−𝑗 

𝑗 

0 0 

𝐴𝑗  

= 𝑌  ⇔   𝑘 = 0  ⇔   𝑘 ∈ Γ′ 



Sufficient condition (again) 

 Main theorem (one direction) 
∃𝜌: Γ → PGL 2, 𝐅   homomorphic, ∃𝑌: 1-dim. subspace of 𝐅2 
  s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌  

  ⇒  Subgroup model reduces to linear matroid parity. 



Coherent representation 

 Main theorem 
∃𝜌: Γ → PGL 2, 𝐅   homomorphic, ∃𝑌: 1-dim. subspace of 𝐅2 
  s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌  

 ⇔  Subgroup model reduces to linear matroid parity 
        with coherent representation. 



𝑂
 ∗  

𝑂
 ∗  

𝑂

 
𝑢 

𝑣 

𝑒 = 𝑢𝑣 ∈ 𝐸 

paired ∗ : 2 × 2 matrix 

Coherent representation 

 Main theorem 
∃𝜌: Γ → PGL 2, 𝐅   homomorphic, ∃𝑌: 1-dim. subspace of 𝐅2 
  s.t.  Γ′ = 𝛼 ∈ Γ 𝜌 𝛼 𝑌 = 𝑌  

 ⇔  Subgroup model reduces to linear matroid parity 
        with coherent representation. 
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Non-returning model 

Non-returning model is formulated as subgroup model 

 Γ = 𝑆𝑑: symmetric group of degree 𝑑 ≥ 2, 

 Γ′ = 𝑆𝑑−1     𝜎 ∈ Γ′  ⇔  𝜎 𝑑 = 𝑑  

 

 

 

 

Remark. In the case of 𝑑 = 4, 𝜌 must be an isomorphism 

                between 𝑆4 and PGL 2, 𝐅3 .     𝐅3 = 𝐙 3𝐙  

 Theorem (non-returning ver.) 
 Non-returning model admits our reduction  ⇔  𝑑 ≤ 4 . 



Conclusion 

• Schrijver’s reduction to linear matroid parity 
    is extendable to the subgroup model 
    of packing 𝐴-paths in group-labelled graphs, under 
    some assumption on representability of the input groups. 
    The reduction leads to an 𝑂 𝐸 + 𝑉 𝜔 -time algorithm. 

• For natural reduction with coherent representation, 
    the same assumption is necessary. 

• Lovász’s reduction idea to matroid matching 
    is always extendable. 

   (Tanigawa and Y., Packing non-zero 𝐴-paths via matroid matching, 
    METR 2013-08,  University of Tokyo.  Available on the Web.) 


