## Packing A-paths in Group-Labelled Graphs via Linear Matroid Parity

#### Yutaro Yamaguchi

Department of Mathematical Informatics Graduate School of Information Science and Technology University of Tokyo

SODA2014, Portland January 5, 2014







Input: G = (V, E): undirected graph,  $s, t \in V$ 



Input: G = (V, E): undirected graph,  $s, t \in V$ 



Input: G = (V, E): undirected graph,  $s, t \in V$ 



Input: G = (V, E): undirected graph,  $s, t \in V$ 





#### A-paths and S-paths

G = (V, E): undirected graph

 $A \subseteq V$ : terminal set,  $S = \{A_1, \dots, A_k\}$ : partition of A

- An *A*-path is a path between distinct terminals in *A* whose inner vertices are not in *A*.
- An S-path is an A-path between distinct classes in S.



## Mader's disjoint S-paths problem

#### Input: G = (V, E): undirected graph $A \subseteq V$ : terminal set, S: partition of AFind: a maximum family of (fully) vertex-disjoint S-paths in G



## Mader's disjoint S-paths problem

#### Input: G = (V, E): undirected graph $A \subseteq V$ : terminal set, S: partition of AFind: a maximum family of (fully) vertex-disjoint S-paths in G

- Min-max formula (Mader 1978)
- Reduction to matroid matching (Lovász 1980)
   → Poly-time solvability (one can obtain a "good" matroid)
- Linear representation of the matroid (Schrijver 2003)
   → More efficient solvability (via linear matroid parity)



#### Linear matroid parity problem

Input: a matrix  $Z \in \mathbf{F}^{n \times 2m}$  with pairing of the columns Find: a maximum family of column-pairs whose union is linearly independent

| <b>[</b> 1 | 0 | 0 | 0 | 0 | 0 | 1 | ן1 |
|------------|---|---|---|---|---|---|----|
| 0          | 1 | 0 | 0 | 0 | 0 | 1 | 0  |
| 0          | 0 | 1 | 0 | 0 | 0 | 1 | 0  |
| 0          | 0 | 0 | 1 | 0 | 0 | 1 | 0  |
| 0          | 0 | 0 | 0 | 1 | 0 | 1 | 0  |
| L0         | 0 | 0 | 0 | 0 | 1 | 1 | 1  |

#### Linear matroid parity problem

Input: a matrix  $Z \in \mathbf{F}^{n \times 2m}$  with pairing of the columns Find: a maximum family of column-pairs whose union is linearly independent



## Linear matroid parity problem

Input: a matrix  $Z \in \mathbf{F}^{n \times 2m}$  with pairing of the columns Find: a maximum family of column-pairs whose union is linearly independent

- Solvable in  $O(m^{17})$  time (Lovász 1981)
- Solvable in  $O(mn^3)$  time (Gabow, Stallmann 1986)
- Solvable in  $O(mn^2)$  time w.h.p. (Cheung, Law, Leung 2011)

If fast matrix multiplication is used, then, for  $\omega \approx 2.376$ 

- Solvable in  $O(mn^{\omega})$  time (Gabow, Stallmann 1986)
- Solvable in  $O(mn^{\omega-1})$  time w.h.p. (Cheung et al. 2011)



#### Group-labelled graphs

$$G = (V, E): \text{ undirected graph}$$

$$\vec{G} = (V, \vec{E}): \text{ two-way orientation of } G$$

$$G$$

$$\vec{G}$$

$$\vec{G}$$

$$\vec{G}$$

$$\vec{G}$$

$$\vec{G}$$

$$\vec{G}$$

$$\vec{G}$$

$$\vec{G}$$

$$\vec{G}$$

$$\vec{V}: \vec{E} \rightarrow \Gamma \text{ with } \psi(\vec{e}) = \psi(e)^{-1} \text{ for each } e \in \vec{E}$$

$$\psi(e) = \alpha$$

$$\psi(\vec{e}) = \alpha^{-1}$$

A pair  $(G, \psi)$  is called a  $\Gamma$ -labelled graph.

#### Labels of walks

 $\psi: \vec{E} \to \Gamma$  with  $\psi(\bar{e}) = \psi(e)^{-1}$  for each  $e \in \vec{E}$ 

The label  $\psi(W)$  of a walk  $W = (v_0, e_1, v_1, \dots, e_k, v_k)$  is  $\psi(W) \coloneqq \psi(e_k) \cdots \psi(e_2) \cdot \psi(e_1)$ .



#### Labels of walks

 $\psi: \vec{E} \to \Gamma$  with  $\psi(\bar{e}) = \psi(e)^{-1}$  for each  $e \in \vec{E}$ 

The label  $\psi(W)$  of a walk  $W = (v_0, e_1, v_1, \dots, e_k, v_k)$  is  $\psi(W) \coloneqq \psi(e_k) \cdots \psi(e_2) \cdot \psi(e_1)$ .  $\psi(\overline{W}) = \psi(\overline{e_1}) \cdot \psi(\overline{e_2}) \cdots \psi(\overline{e_k})$  $= \psi(e_1)^{-1} \cdot \psi(e_2)^{-1} \cdots \psi(e_k)^{-1} = \psi(W)^{-1}$ 



#### Packing A-paths in group-labelled graphs

- Non-zero model (Chudnovsky, Geelen, Gerards, Goddyn, Lohman, Seymour 2006) An *A*-path *P* can be used for packing  $\Leftrightarrow \psi(P) \neq 1_{\Gamma}$ .
- Non-returning model (Pap 2007)  $\Gamma$  is a symmetric group  $S_d$ , the set of permutations on  $\{1, \dots, d\}$ . An A-path P can be used for packing  $\Leftrightarrow (\psi(P))(d) \neq d$ .
- Subgroup model (Pap)

For a prescribed proper subgroup  $\Gamma' \subset \Gamma$ , an *A*-path *P* can be used for packing  $\Leftrightarrow \psi(P) \notin \Gamma'$ .

#### Relation among the models



 $\Gamma'$ : proper subgroup of  $\Gamma$ 

An A-path P is admissible  $\stackrel{\text{def}}{\Leftrightarrow} \psi(P) \notin \Gamma'$ .



- $\Gamma'$ : proper subgroup of  $\Gamma$
- An A-path P is admissible  $\stackrel{\text{def}}{\Leftrightarrow} \psi(P) \notin \Gamma'$ .



- $\Gamma'$ : proper subgroup of  $\Gamma$
- An A-path P is admissible  $\stackrel{\text{def}}{\Leftrightarrow} \psi(P) \notin \Gamma'$ .



- $\Gamma'$ : proper subgroup of  $\Gamma$
- An A-path P is admissible  $\stackrel{\text{def}}{\Leftrightarrow} \psi(P) \notin \Gamma'$ .



## Subgroup model of packing A-paths

Input:  $(G, \psi)$ :  $\Gamma$ -labelled graph  $A \subseteq V(G)$ : terminal set,  $\Gamma'$ : proper subgroup of  $\Gamma$ Find: a maximum family of (fully) vertex-disjoint admissible A-paths in  $(G, \psi)$ 

- Min-max formula (Pap 2007)
- No explicitly polynomial-bounded algorithm was known...

## Subgroup model of packing A-paths

Input:  $(G, \psi)$ :  $\Gamma$ -labelled graph  $A \subseteq V(G)$ : terminal set,  $\Gamma'$ : proper subgroup of  $\Gamma$ Find: a maximum family of (fully) vertex-disjoint admissible A-paths in  $(G, \psi)$ 

- Min-max formula (Pap 2007)
- No explicitly polynomial-bounded algorithm was known...
  - → Extension of algorithm for the non-zero model
  - → Reduction to linear matroid parity

## Algorithms for subgroup model

- Extension of algorithm for the non-zero model
  - Extend the combinatorial algorithm of Chudnovsky, Cunningham, Geelen (2008)
  - Always applicable
  - Not so fast,  $O(|V(G)|^5)$  time
- Reduction to linear matroid parity
  - Extend the linear representation of Schrijver (2003)
  - Not always applicable
  - Faster,  $O(|V(G)|^{\omega})$  time w.h.p. for simple graphs, for example, where  $\omega \approx 2.376$  is the matrix multiplication exponent

# What is desired for reduction? reduce Linear matroid parity Subgroup model

Vertex-disjoint admissible *A*-paths uniquely

Linearly independent column-pairs

## What is desired for reduction?

Subgroup model



Linear matroid parity

Vertex-disjoint admissible *A*-paths



Linearly independent column-pairs

- Edge ↔ Column-pair (Edge set ↔ Column-pairs)
- Each connected component formed by a feasible edge set contains at most one *A*-path, which is admissible.



#### Sufficient condition for reduction

Γ: group, Γ': proper subgroup of Γ, **F**: field *n*: positive integer,  $I_n: n \times n$  identity matrix

- $GL(n, \mathbf{F})$ : set of all nonsingular  $n \times n$  matrices over  $\mathbf{F}$
- $\operatorname{PGL}(n, \mathbf{F}) \coloneqq \operatorname{GL}(n, \mathbf{F}) / \{ kI_n \mid k \in \mathbf{F} \}$

#### Main theorem (one direction)

<sup>∃</sup> $\rho$ : Γ → PGL(2, **F**) homomorphic, <sup>∃</sup>Y: 1-dim. subspace of **F**<sup>2</sup> s.t. Γ' = {  $\alpha \in \Gamma \mid \rho(\alpha)Y = Y$  }

 $\Rightarrow$  Subgroup model reduces to linear matroid parity.

- Each terminal in *A* is associated with *Y*.
- Each edge acts and carries 1-dim. subspaces.



- Each terminal in *A* is associated with *Y*.
- Each edge acts and carries 1-dim. subspaces.



- Each terminal in *A* is associated with *Y*.
- Each edge acts and carries 1-dim. subspaces.



- Each terminal in *A* is associated with *Y*.
- Each edge acts and carries 1-dim. subspaces.



- Each terminal in *A* is associated with *Y*.
- Each edge acts and carries 1-dim. subspaces.



#### Construction of matrix (step 1)

- Construct the incidence matrix of the input graph, where fix one direction  $\vec{e} = uv \in \vec{E}$  of each edge  $e \in E$ .
- Replace (u, e)-entry by  $I_2$  and (v, e)-entry by  $-\rho(\psi(\vec{e}))$ .



## Construction of matrix (step 1)

- Construct the incidence matrix of the input graph, where fix one direction  $\vec{e} = uv \in \vec{E}$  of each edge  $e \in E$ .
- Replace (u, e)-entry by  $I_2$  and (v, e)-entry by  $-\rho(\psi(\vec{e}))$ .



## Construction of matrix (step 2)

- $Q \coloneqq \{x \in (\mathbf{F}^2)^{V(G)} \mid x(v) \in Y (v \in A), x(v) = \mathbf{0} (v \notin A)\}.$
- The linear independence is considered in  $(\mathbf{F}^2)^{V(G)}/Q$ .



## Construction of matrix (step 2)

- $Q \coloneqq \{x \in (\mathbf{F}^2)^{V(G)} \mid x(v) \in Y (v \in A), x(v) = \mathbf{0} (v \notin A)\}.$
- The linear independence is considered in  $(\mathbf{F}^2)^{V(G)}/Q$ .



#### Ex. 1. Packing odd-length A-paths

$$\Gamma = (\{1, -1\}, \times), \quad \Gamma' = \{1\} \quad (\psi(e) \equiv -1)$$

$$\rightarrow \rho(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \rho(-1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \langle \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle, \quad \mathbf{F} : \text{arbitrary}$$

$$\rho(1)Y = \langle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle = \langle \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle = Y$$

$$\rho(-1)Y = \langle \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle = \langle \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rangle \neq Y$$



 $\Gamma = (\mathbf{Z}, +)$ ,  $\Gamma' = \{0\}$  ( $\psi$  : as above)

## Sufficient condition (again)

Main theorem (one direction)

<sup>∃</sup> $\rho$ :  $\Gamma \to PGL(2, \mathbf{F})$  homomorphic, <sup>∃</sup>Y: 1-dim. subspace of  $\mathbf{F}^2$ s.t.  $\Gamma' = \{ \alpha \in \Gamma \mid \rho(\alpha)Y = Y \}$ 

 $\Rightarrow$  Subgroup model reduces to linear matroid parity.

#### **Coherent representation**

#### Main theorem

- <sup>∃</sup> $\rho$ :  $\Gamma \to PGL(2, \mathbf{F})$  homomorphic, <sup>∃</sup>Y: 1-dim. subspace of  $\mathbf{F}^2$ s.t.  $\Gamma' = \{ \alpha \in \Gamma \mid \rho(\alpha)Y = Y \}$
- ⇔ Subgroup model reduces to linear matroid parity with coherent representation.

#### **Coherent representation**

#### Main theorem

- <sup>∃</sup> $\rho$ :  $\Gamma \to PGL(2, \mathbf{F})$  homomorphic, <sup>∃</sup>Y: 1-dim. subspace of  $\mathbf{F}^2$ s.t.  $\Gamma' = \{ \alpha \in \Gamma \mid \rho(\alpha)Y = Y \}$
- ⇔ Subgroup model reduces to linear matroid parity with coherent representation.

 $e = uv \in E$ 



#### **Coherent representation**

#### Main theorem

- <sup>∃</sup> $\rho$ :  $\Gamma \to PGL(2, \mathbf{F})$  homomorphic, <sup>∃</sup>Y: 1-dim. subspace of  $\mathbf{F}^2$ s.t.  $\Gamma' = \{ \alpha \in \Gamma \mid \rho(\alpha)Y = Y \}$
- ⇔ Subgroup model reduces to linear matroid parity with coherent representation.



#### Non-returning model

Non-returning model is formulated as subgroup model

$$\Gamma = S_d: \text{symmetric group of degree } d \ge 2,$$
  
$$\Gamma' = S_{d-1} \quad (\sigma \in \Gamma' \iff \sigma(d) = d)$$

#### Theorem (non-returning ver.)

Non-returning model admits our reduction  $\Leftrightarrow d \leq 4$ .

*Remark.* In the case of d = 4,  $\rho$  must be an isomorphism between  $S_4$  and PGL(2,  $\mathbf{F}_3$ ). ( $\mathbf{F}_3 = \mathbf{Z}/3\mathbf{Z}$ )

## Conclusion

- Schrijver's reduction to linear matroid parity
   is extendable to the subgroup model
   of packing A-paths in group-labelled graphs, under
   some assumption on representability of the input groups.
   The reduction leads to an O(|E| + |V|<sup>ω</sup>)-time algorithm.
- For natural reduction with coherent representation, the same assumption is necessary.
- Lovász's reduction idea to matroid matching is always extendable.

(Tanigawa and Y., Packing non-zero *A*-paths via matroid matching, *METR* 2013-08, University of Tokyo. Available on the Web.)