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Overview

Poly-time solvable

[Packing non-zero A-paths] but not so fast

A path-packing problem '[‘
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[ Mader’s disjoint S—paths] Efficiently solvable

/ via linear matroid parity

[Non-bipartite matching] [ Menger’s disjoint paths]
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Menger’s disjoint paths problem
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A-paths and S-paths

G = (V, E): undirected graph
A C V:terminal set, S={A4,...,A;}: partition of A

* An is a path between in A
whose inner vertices are not in A.

* An S-pathis an between distinct classes in S.

An , NOT an S-path An S-path



Mader’s disjoint S-paths problem

/Input: G = (V, E): undirected graph
A € V:terminal set, S: partition of A
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Mader’s disjoint S-paths problem

(Input: G = (V, E): undirected graph
A € V:terminal set, S: partition of A
\Find: a maximum family of (fully) vertex-disjoint S-paths in Gj

* Min-max formula (Mader 1978)

* Reduction to matroid matching (Lovész 1980)
— Poly-time solvability (one can obtain a “good” matroid)

* Linear representation of the matroid (Schrijver 2003)
— More efficient solvability (via linear matroid parity)
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Linear matroid parity problem
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/Input: a matrix Z € with pairing of the columns\

Find: a maximum family of column-pairs
whose union is linearly independent
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Linear matroid parity problem
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Linear matroid parity problem

(Input: a matrix Z € F™™?™ with pairing of the columns

Find: a maximum family of column-pairs
. whose union is linearly independent P

* Solvable in O(m'”) time (Lovész 1981)
e Solvable in O (mn?) time (Gabow, Stallmann 1986)

e Solvable in O0(mn?) time w.h.p. (Cheung, Law, Leung 2011)

If fast matrix multiplication is used, then, for w = 2.376
 Solvable in O(mn®) time (Gabow, Stallmann 1986)
e Solvable in O(mn®~1) time w.h.p. (Cheung et al. 2011)
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Group-labelled graphs
(V, E): undirected graph ./‘ ./.

(V, E) two-way orientation of ¢ G G

G
G

[': group
U E > T with ¥(&) = w(e) ' foreache € E

.«%.

A pair (G,) is called a I'-labelled graph.



Labels of walks

Y: E - T with Y(e) =yP(e) ! foreache € E
The label Y (W) of awalk W = (v,, eq, V4, ..., €x, V) is
(W) = (er) - Plez) - Pley) .



Labels of walks

Y: E - T with Y(e) =yP(e) foreache € E
The label Y (W) of awalk W = (v,, eq, V4, ..., €x, V) is
YW) = YP(e) - P(ez) - P(ey).

YW) =y(ey) - p(ey) - p(ey)
=YP(e) - Ple) typle) P =ypW)™?



Packing A-paths in group-labelled graphs

* Non-zero model (Chudnovsky, Geelen, Gerards,
Goddyn, Lohman, Seymour 2006)

An A-path P can be used for packing & (P) # 1.

* Non-returning model (pap 2007)

I'is a symmetric group S, the set of permutationson {1, ..., d}.
An A-path P can be used for packing (z,b(P))(d) * d.

e Subgroup model (Pap)

For a prescribed proper subgroup I'' c T,
an A-path P can be used for packing & y(P) ¢ I'".



Relation among the models

[Non-returning model] ~ [Subgroup model]

Focus on

[ Non-zero model ]

|

[ Packing S—paths]




Subgroup model

I'": proper subgroup of T

def

An A-path P is admissible & W (P) ¢ I''.

= ({11 _1}1X) A
" ={1}
Pp(e) = -1
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Subgroup model

I'": proper subgroup of T
An A-path P is admissible & (P) ¢ T

I' = ({11 _1}1X) A
I ={1} odd-length
Y(e) = -1

0
< ( admissible




Subgroup model of packing A-paths

(Input: (G,y): I'-labelled graph A
A € V(G): terminal set, T'": proper subgroup of I'

Find: a maximum family of
\_ (fully) vertex-disjoint admissible A-pathsin (G,)

* Min-max formula (Pap 2007)

* No explicitly polynomial-bounded algorithm was known...



Subgroup model of packing A-paths

/Input: (G,y): I'-labelled graph A
A € V(G): terminal set, T'": proper subgroup of I'

Find: a maximum family of
\_ (fully) vertex-disjoint admissible A-pathsin (G,9) )

* Min-max formula (Pap 2007)

* No explicitly polynomial-bounded algorithm was known...
— Extension of algorithm for the non-zero model
— Reduction to linear matroid parity



Algorithms for subgroup model

Extension of algorithm for the non-zero model

— Extend the combinatorial algorithm of
Chudnovsky, Cunningham, Geelen (2008)

— Always applicable
— Not so fast, O(|V(G)]?) time

Reduction to linear matroid parity
— Extend the linear representation of Schrijver (2003)

— Not always applicable

— Faster, O(|V(G)|®) time w.h.p. for simple graphs, for example,
where w = 2.376 is the matrix multiplication exponent



What is desired for reduction?

reduce
Subgroup model Linear matroid parity

O/\/O

Vertex-disjoint uniquely  Linearly independent
admissible A-paths column-pairs




What is desired for reduction?

reduce
Subgroup model —_— Linear matroid parity
Vertex-disjoint iniquelv Linearly independent
admissible A-paths column-pairs

 Edge < Column-pair (Edge set & Column-pairs)

* Each connected component formed by a feasible edge set
contains at most one A-path, which is admissible.



Sufficient condition for reduction

I': group, I'':proper subgroup of I', F: field
n: positive integer, [,: n X n identity matrix

* GL(n, F): set of all nonsingular n X n matrices over F
. PGL(n, F) := GL(n,F)/{ kI, | k € F}

Main theorem (one direction)

“p: T - PGL(2,F) homomorphic, ?Y: 1-dim. subspace of F?
st. " ={aeTl|pla)Y =Y}

= Subgroup model reduces to linear matroid parity.



ldea of reduction

p: T = PGL(2,F) homomorphic, Y:1-dim. subspace of F?
st. " ={ael|pla)Y =Y} (F: field)

 Each terminal in A is associated with Y.
* Each edge acts and carries 1-dim. subspaces.
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ldea of reduction
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Construction of matrix (step 1)

p:T = PGL(2,F) homomorphic, Y:1-dim. subspace of F?

st. '"={a el |pla)Y =Y} (F: field)
* Construct the incidence matrix of the input graph,
where of each edge e € E.
* Replace (u, e)-entry by I, and (v, e)-entry by —p(l/)(@)).
e
v [0
® U i1l
) o
Vo i=1.
® 0




Construction of matrix (step 1)

p:T = PGL(2,F) homomorphic, Y:1-dim. subspace of F?
st. " ={a€el|p(a)Y =Y} (F: field)

* Construct the incidence matrix of the input graph,
where of each edge e € E.

* Replace (u, e)-entry by I, and (v, e)-entry by —p(l/)(@)).

e e
v IR D I A
® vl i1 (/N S L &+
________ o: | — b O
"® v =l v i=p(@)
0 0
| |




Construction of matrix (step 2)
p: T = PGL(2,F) homomorphic, Y:1-dim. subspace of F?
st. '"={a€el|pla)Y =Y} (F: field)

c Q={xe(F)D|x(v)eY(veAl), xv)=0weAl)}

* The linear independence is considered in

e O+fyeyY
L I D A A B 0:
e U | Ly Y i
b O
v i-p(@): 0
A 0




Construction of matrix (step 2)
p: T = PGL(2,F) homomorphic, Y:1-dim. subspace of F?
st. '"={a€el|pla)Y =Y} (F: field)

c Q={xe(F)D|x(v)eY(veAl), xv)=0weAl)}

* The linear independence is considered in

e O+fyeyY
L I D A A B 0:
e U | Ly Y.
b O
v i-p(@): 0
A 0

Eliminate in advance.



Ex. 1. Packing odd-length A-paths

[ = ({1,—1},X) ) F, — {1} (lp(e) = _1)

- p(1) = (1) (1)] , p(—1) = [2 (1)] , Y = <[(1)]>, F : arbitrary

o= {5 B =()-r

reor=( A=)+

p:T = PGL(2,F) homomorphic, Y:1-dim. subspace of F?
st. '"={a el |pla)Y =Y} (F: field)



Ex. 2. Mader’s S-paths

j J
7 0
A; ! .

r'=(Z,+), I''"={0} (Y :asabove)




Ex. 2. Mader’s S-paths

l. J
e 0
A i \ 4 Aj

r'=(Z,+), I''"={0} (Y :asabove)

. p(k)=[11 )| ke, Y=<[(1)]>, F=0Q

oo =( B =)=y = w0 o ver

p: T = PGL(2,F) homomorphic, Y:1-dim. subspace of F?
st. I'"={a€eTl|pla)Y =Y} (F: field)




Sufficient condition (again)

Main theorem (one direction)

p: T - PGL(2,F) homomorphic, ?Y: 1-dim. subspace of F?
st. ' ={a€el|pla)Y =Y}

= Subgroup model reduces to linear matroid parity.



Coherent representation

p: T - PGL(2,F) homomorphic, ?Y: 1-dim. subspace of F?
st. ' ={a€el|pla)Y =Y}

< Subgroup model reduces to linear matroid parity
with coherent representation.



Coherent representation

p: T - PGL(2,F) homomorphic, ?Y: 1-dim. subspace of F?
st. ' ={a€el|pla)Y =Y}

< Subgroup model reduces to linear matroid parity
with coherent representation.

________________
________________

————————————————

________________

O
—J

paired * : 2 X 2 matrix




Coherent representation

p: T - PGL(2,F) homomorphic, ?Y: 1-dim. subspace of F?
st. ' ={a€el|pla)Y =Y}
< Subgroup model reduces to linear matroid parity
with coherent representation.

e =uv eEE
-0t T — feasible in l.m.p.
SN Nt S admissible
u N

________________

v s O

________________

0: -
ey O

paired * : 2 X 2 matrix



Non-returning model

Non-returning model is formulated as subgroup model

[' =S,: symmetric group of degree d = 2,
M"=S,, (el  o(d)=4d)

Theorem (non-returning ver.)

Non-returning model admits our reduction & d < 4.

Remark. In the case of d = 4, p must be an isomorphism
between S, and PGL(2,F;). (F; =Z/37Z)



Conclusion

e Schrijver’s reduction to linear matroid parity
is extendable to the subgroup model

of packing A-paths in group-labelled graphs,

on representability of the input groups.

The reduction leads to an O(|E| + |V |%)-time algorithm.

* For natural reduction with coherent representation,

* Lovasz’s reduction idea to matroid matching
is always extendable.

(Tanigawa and Y., Packing non-zero A-paths via matroid matching,
METR 2013-08, University of Tokyo. Available on the Web.)



